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Total linearization~of the Boltzmann and Vlasov equations is used to present  a 
technique applicable to equations which have polynomial-type nonlinearities 
and describe the evolution of  probability density functions or distributions. It 
is an extension of  an earlier result, where a method yielding a linear equation 
with a nonlinear  constraint was presented. 

Let f e X and g c X | X, where X is a space  containing all evolut ions 
o f  probabi l i ty  densi ty funct ions  and distr ibut ions on R 6, e.g., X = @,(N7). 

Let 

Y =  Yo |  Y , |  I12| Y 4 |  �9 . |  Y2k|  �9 �9 �9 

where Yj = X I | 1 7 4  �9 . |  and  each Xi is a copy of  X. Total  lineariz- 
at ion of  kinetic equat ions  is achieved in the space Y. The Bol tzmann  
equa t ion  [ adap ted  f rom Percus (1987)] can be writ ten as 

(of/ot)(t, x, vl)+ v,. [ (Vxf)( t ,  x, Vl)] + 1/m F(x). [ (Vvf)( t ,  x, va)] 

=fR, falvx-v2lcr(lVm-V2l, fl)[f(t,x,G)f(t,x,v;) 

-f(t,  x, vi)f(t, x, v2)] dO d3v2 (1) 

where o- is the differential cross section, f~ is the direct ion of  scattering, 
F ( . )  is an external  force field, and vl and v2 are precol l is ional  velocities,  

G(vl, v2, 1~) = (vl + v2+ [vl - v211~)/2 

V2(Vl , V2, ~ )  = (V 1 q- V 2 --IV 1 -- v2l~Q)/2 
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Define IF[ 6 by 

Grzybowski 

(l-I6g)(t ,x,v)=fIR g(t ,x ,v ,O,y,u)  d3yd3u 

Since we are dea l ing  with the  evolu t ion  o f  p robab i l i t y  dens i ty  funct ions ,  
zero in the  in tegrand  can be rep laced  by  any nonnega t ive  n u m b e r  s. We 
can easi ly  see that  1~ 6 is l inear .  

Also,  s ince for all t > O,f(t) is a nonnega t ive  func t ion  o n  ~6  and  be longs  
to the uni t  sphere  in LI(R6), H 6 ( f |  =f ,  i.e., IX 6 coinc ides  with the square  

roo t  in the  sense o f  t ensor  produc t .  
Def in ing 

(Aog)(t, x, v) = (Lg)(t, x, v) - v. [Vx(II6g)]( t ,  x, v) 

- 1/m F(x) .  [Vv(I-[6g)](t , x, z2) 

(Lg)(t,X, Vl)= fR~ ~ lv,-v2lcr(lv,-v2l, a)[g(t,x,  v~, t,x, v'2) 

-g( t ,  x, v~, t, x, v2)] dO d3 v2 

we ob ta in  the  fo l lowing l inear  form of  the Bo l t zmann  equa t ion  (Grzybowsk i ,  

1988) 

a / O t  ( [ I 6 g )  = Aog (2) 

with the non l inea r  cons t ra in t  

g = (II6g) | (H6g) (3) 

This non l inea r i ty  can be r emoved  by  redef ining the cons t ra in t  in spaces  Y2~ 
for h igher  and  h igher  va lues  o f  k and  cons ide r ing  the l imit ing case k -~ oo. 

Define 

A1 = ~I6(~)H6, A2 = II12| 

A3 = H24| . . . , Ak = 1-I3-2k |  , �9 �9 �9 

where  

(II3*2kh)(tl,  Xl, Vl, t2, x2, 1)2,/3, x3, v3, �9 �9 �9 , t2 k , x2 k , v2 k) 

- ~ I  " " " IR3.2k h ( f l , X l , l ) l , O ,  x2, V2,0, X3, l ) 3 , " - , O ,  x2k, l)2 k) 

• d3Xl d3Vl �9 . . d3x3 .2k  d303 .2  k 

for  h =fl|174174 " "| ~ X. 



Probability Density Evolution Equations 379 

By linear extension, operators A~ can be defined on respective tensor 
product spaces and we can see that 

a1((f~ | | (f3 | = f l  | 

a2((A | | (f3 @f4) | (f ,  (~)f6) (~) (f7 (~)fs)) 

= ( f l @ f 2 ) ( ~ ( f s @ f 6 ) ,  

etc., so that each Ak acts like a tensor square root on certain elements of 
Y2 k+~ , for example, on tensor powers of order 2 k+l. 

Define also 

l Aoooo al 0 H6~176 o 
AL -- . . . .  0 0 A2 ' I 0 

G L 

where g(k)~ Yk- Then (2) and (3) give 

g(1) 

g(2) 

g(4) 

g(.8) 

BLGL = A L G L  (4) 

which is a linear equation with no constraints. 
Defining 

( a # g ) (  t, x, v)  = ( L # g ) (  t, x, v)  - v . [Vx(II6g)](t, x, v) 

- 1 / m  F l ( X ) .  [V~(I16g)](t, x, v) 

( L # g ) ( t , x , v ) = - l / m f # I # F 2 ( x - x ' ) ' V ~ g ( t , x , v , t , x ' , v ' ) d 3 x ' d 3 v '  

we obtain the following linear form of the Vlasov equation: 

O/Ot(II6g) = a # g .  (5) 

with the nonlinear constraint (3). 
Consequently, if we define A # L  by replacing Ao with A# [AOO 

0 A1 0 
A # L  = 0 0 A 2 
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then (5) and (3) give 

BLGL = A# LGL (6) 

which is a linear form of  the Vlasov equat ion with no constraints. 
It is not  necessary to use full tensor products  f |  f | 1 7 4 1 7 4 1 7 4  etc. 

Defining g(t ,x ,  v,y, u ) = f ( t , x ,  v) . f ( t , y ,  u) (and properly redefining 
related objects) suffices, but  it can be done at the price o f  imposing stronger 
assumptions on f, if we want  the (condit ional ly linear) tensor square root  
operat ion to commute  with the action o f  O/Ot. 
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